
Stephen Checkoway

Programming Abstractions
Lecture 29: More macros

Announcements

Office hours Tuesday 13:30–14:30

Homework 8 now due on the last day of class

Some form of remote instruction for the final two weeks

‣ Possibly just entirely remote

‣ Possibly in-person with recorded lectures

Consider switch
(switch exp [case-1 exp-1] ... [case-n exp-n])

The behavior we want is

‣ exp is evaluated;

‣ the result is compared against each of case-1 through case-n in order;

‣ if the result is equal to case-i then the value of the expression is exp-i

It should behave the same as

(let ([result exp])

 (cond [(equal? result case-1) exp-1]

 ...

 [(equal? result case-n) exp-n]))

Let's define a switch syntax!

(define-syntax switch

 (syntax-rules ()

 [(_ exp [case case-exp] ...)

 (let ([result exp])

 (cond [(equal? result case) case-exp] ...))]))

(switch (- 2 1)

 [0 "zero"]

 [1 "one"]

 [2 "two"])

Let's define a switch syntax!

(define-syntax switch

 (syntax-rules ()

 [(_ exp [case case-exp] ...)

 (let ([result exp])

 (cond [(equal? result case) case-exp] ...))]))

(switch (- 2 1)

 [0 "zero"]

 [1 "one"]

 [2 "two"])

(let ([result (- 2 1)])

 (cond [(equal? result 0) "zero"]

 [(equal? result 1) "one"]

 [(equal? result 2) "two"]))

What is the value of this?

(define-syntax switch

 (syntax-rules ()

 [(_ exp [case case-exp] ...)

 (let ([result exp])

 (cond [(equal? result case) case-exp] ...))]))

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"])

A. 3

B. "three"

C. void

D. It's an error

5

Let's add an [else exp] to switch

We want to support an else

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"]

 [else "something else"])

As we've currently implemented switch, this won't work

‣ Why not?

Let's add an [else exp] to switch

We want to support an else

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"]

 [else "something else"])

As we've currently implemented switch, this won't work

‣ Why not?
(let ([result 3])

 (cond [(equal? result 0) "zero"]

 [(equal? result 1) "one"]

 [(equal? result 2) "two"]

 [(equal? result else) "something else"]))

First attempt

(define-syntax switch

 (syntax-rules ()

 [(_ exp [case case-exp] ... [else else-exp])

 (let ([result exp])

 (cond [(equal? result case) case-exp] ...

 [else else-exp]))]

 [(_ exp [case case-exp] ...)

 (switch exp [case case-exp] ... [else (void)])]))

Two rules, each with a pattern and a matching transformation

Idea: a (switch …) without an [else …] matches the second rule;

a (switch …) with an [else …] matches the first rule

Recursive

macros are

fine!

Trying it out

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"]

 [else "something else"])

returns "something else"

Success?

Not quite

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"])

returns "two"!

The problem is this switch matches the first pattern

(_ exp [case case-exp] ... [else else-exp])

We need to inform Racket that else is not a pattern variable and is meant to be

matched literally

Not quite

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"])

returns "two"!

The problem is this switch matches the first pattern

(_ exp [case case-exp] ... [else else-exp])

We need to inform Racket that else is not a pattern variable and is meant to be

matched literally

(let ([result 3])

 (cond [(equal? result 0) "zero"]

 [(equal? result 1) "one"]

 [2 "two"]))

Literal matches
(syntax-rules (literal ...) [pattern transform] ...)

The first argument to syntax-rules is a list of words to match literally

(define-syntax switch

 (syntax-rules (else)

 [(_ exp [case case-exp] ... [else else-exp])

 (let ([result exp])

 (cond [(equal? result case) case-exp] ...

 [else else-exp]))]

 [(_ exp [case case-exp] ...)

 (switch exp [case case-exp] ... [else (void)])]))

else is not a pattern variable;

it's matched literally

Second attempt

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"])

Result is void

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"]

 [else "blah"])

Result is "blah"

(let ([result 3])

 (cond [(equal? result 0) "zero"]

 [(equal? result 1) "one"]

 [(equal? result 2) "two"]

 [else (void)]))

(let ([result 3])

 (cond [(equal? result 0) "zero"]

 [(equal? result 1) "one"]

 [(equal? result 2) "two"]

 [else "blah"]))

Macros match arguments, not evaluate

When a macro is being evaluated, the arguments are matched against the

pattern but they aren't evaluated

(switch 1

 [0 (displayln "zero")]

 [1 (displayln "one")]

 [2 (displayln "two")]

 [else (displayln "something else")])

This prints one

If the arguments were evaluated (well, it'd be an error because 0 isn't a

procedure) but it'd also print out zero, one, two, something else

What is printed by the following C code. f is a

macro.

#include <stdio.h>

#define f(x) \

 do { \

 int y = 10; \

 int z = (x); \

 printf("y=%d z=%d\n", y, z); \

 } while (0)

int main() {

 int y = 5;

 f(y + 2);

 return 0;

}

A. y=5 z=7

B. y=5 z=12

C. y=10 z=7

D. y=5 z=12

E. y=10 z=12

13

C's macros are "unhygienic"

We can run the code through C's preprocessor which expands macros to see

the problem (line breaks added):

int main() {

 int y = 5;

 do {

 int y = 10;

 int z = (y + 2);

 printf("y=%d z=%d\n", y, z);

 } while (0);

 return 0;

}

Scheme/Racket's macros are hygienic
Same macro as before, but in Racket

(define-syntax f

 (syntax-rules ()

 [(_ x)

 (let* ([y 10]

 [z x])

 (printf "y=~s z=~s\n" y z))]))

(let ([y 5])

 (f (+ y 2)))

Prints: y=10 z=7

Hygienic macros

Unhygienic macros: Macros can introduce variables that shadow variables used

in the arguments

‣ E.g., C's macros are unhygienic

Hygienic macros: Expansion of macros cannot accidentally capture variables

‣ E.g., Racket's and Rust's macros are hygienic

(define-syntax debug-value

 (syntax-rules ()

 [(_ arg)

 (let ([value arg])

 (printf " ~s=~s\n" 'arg value)

 value)]))

(define (f x)

 (* 2 (debug-value x)))

(f 10)

What is printed by this code; what is the value of the (f 10)?

A. printed: arg=10  

value: 10

B. printed: x=10 

value: 20

C. printed: x=10 

value: 10

D. printed: x=10 

value: 20

17

A debug macro

We can use debug-value to write a debug macro that wraps a procedure call

and prints out all of its arguments:

(let ([x 10]

 [y 20]

 [z 30])

 (debug (+ (add1 x) (sub1 y) (* z z))))

Prints:

(+ (add1 x) (sub1 y) (* z z))

 (add1 x)=11

 (sub1 y)=19

 (* z z)=900

Returns: 930

debug implementation

(define-syntax debug

 (syntax-rules ()

 [(_ (f arg ...))

 (begin

 (displayln '(f arg ...))

 (f (debug-value arg) ...))]))

